top of page


  1. "Tunnel-Structured Phosphate Exhibiting High Proton Conductivity and Thermal Stability over a Wide Intermediate Temperature Range", Y. Matsuda*, J. Nakajima, Y. Inoue, A. Ishikawa, N. Ueta, D. Morik, S. Taminato, N. Imanishi, T. Fukushima, S. Higashimoto, Inorg. Chem.63, 8018 (2024).

  2. "Photocatalytic water splitting on Cu2SnS3 photoelectrode: Effects of Cu/Sn composite ratio on the photoelectrochemical performance" S. Kamemoto, Y. Matsuda, M. Takahashi, S. Higashimoto, Catalysis Today, 411-412, 113820 (2023).

  3. “Synthesis and Proton Conductivity of the Mixed Cation Phosphate, KCo1-xH2x(PO3)3 yH2O with a with a One-dimensional Tunnel Structure”, J. Nakajima, N. Ueda, S. Taminato, D. Mori, N. Imanishi, S. Higashimoto, Y. Matsuda*, J. Jpn. Soc. Powder Powder Metallurgy, 69, 99-103 (2022).

  4. “Photocatalytic water splitting on the CuInS2 photoelectrodes: Effects of co-electrodeposition mechanisms on the photoelectrochemical properties”, M. Tanaka, Y. Matsuda, M. Takahashi, S. Higashimoto, Catalysis Today, 410, 302-308 (2023).

  5. “High proton conductivity of NaMg1-xLixHx(PO3)3·yH2O with the three-dimensional open framework in the intermediate temperature”, N. Ueda, J. Nakajima, D. Mori, S. Taminato, N. Imanishi, S. Higashimoto, Y. Matsuda*, Materials Advances, 2, 6603-6612 (2021).

  6. “Photoelectrochemical Water Splitting on the Pt-In2S3/CuInS2 Photoelectrode under Solar Light Irradiation: Effects of Electrolytes on the Solar Energy to Hydrogen Conversion”, K. Matoba, M. Takahashi, Y. Matsuda, S. Higashimoto, Journal of Electroanalytical Chemistry, 895, 115489 (2021).

  7. “Proton conductivity in mixed cation phosphate, KMg1-xH2x(PO3)·yH2O, with a layered structure at low-intermediate temperatures”, Y. Matsuda*, N. Ueda, K. Funakoshi, J. Nakajima, D. Mori, S. Taminato, S. Higashimoto, Dalton Transactions, 50, 7678-7685 (2021).

  8. “Fabrication of Pt /In2S3/CuInS2 thin film as stable photoelectrode for water splitting under solar light irradiation”, K. Matoba, Y. Matsuda, M. Takahashi, Y. Sakata, J. Zhang, S. Higashimoto, 87-93 (2021).

  9. “Arrangement of water molecules and high proton conductivity of tunnel structure phosphates, KMg1-xH2x(PO3)3·yH2O”, Y. Matsuda*, K. Funakoshi, R. Sebe, G. Kobayashi, M. Yonemura, N. Imanishi, D. Mori, S. Higashimoto, RSC Advances, 10, 7803-7811 (2020).

  10. “Mechanistic insights into visible light-induced direct hydroxylation of benzene to phenol with air and water over Pt-modified WO3 photocatalyst”, Y. Kurikawa, M. Togo, M. Murata, Y. Matsuda, Y. Sakata, H. Kobayashi, S. Higashimoto, (5), 557 (2020).

  11. “Aqueous Lithium Rechargeable Battery with a Tin(II) Chloride Aqueous Cathode and a Water-Stable Lithium-Ion Conducting Solid Electrolyte”, S. Watanabe, D. Mori, S. Taminato, Y. Matsuda, O. Yamamoto, Y. Takeda, N. Imanishi, , , A539-A545 (2019).

  12. Synthesis, structure and ionic conductivity of garnet like lithium ion conductor Li6.25+xGa0.25La3-xSrxZr3O12”, D. Mori, K. Sugimoto, Y. Matsuda, K. Ohmori, T. Katsumata, S. Taminato, Y. Takeda, O. Yamamoto, N. Imanishi, , 166, A5168-A5173 (2019).

  13. “Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6.250.25La3Zr2O12 (: Al3+ and Ga3+)”Y. Matsuda*, A. Sakaida, K. Sugimoto, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi, , , 69-74 (2017).

  14. “High Specific Energy Density Aqueous Lithium-Metal Choloride Rechargeable Batteries”, Y. Morita, S. Watanabe, P. Zhnag, H. Wang, D. Mori, Y. Matsuda, O. Yamamoto, Y. Takeda, N. Imanishi,  A1958-A1964 (2017).

  15. “A reversible dendrite-free high-areal-capacity lithium metal electrodes”, H. Wang, M. Matsui, H. Kuwata, H. Sonoki, Y. Matsuda, X.F. Shang, Y. Takeda, O. Yamamoto, N. Imanishi, 15106-15113 (2017).

  16. “Phase relation, structure and ionic conductivity of Li7-x-3yAlLa3Zr2-xTaO12”, Y. Matsuda*, Y. Itami, K. Hayamizu, T. Inagaki, M. Matsui, Y. Takeda, O. Yamamoto, N. Imanishi, 78210-78218 (2016).

  17. High lithium-ion conducting NASICON-type Li1+x-yAlxNbyTi2-x-y(PO4)3 solid electrolytes”, X. F. Shang, H. Nemori, S. Mitsuoka, Y. Matsuda, Y. Takeda, O. Yamamoto, N. Imanishi, Solid State Ionics, 297, 43-48 (2016).

  18. “Surface layer and morphology of lithium metal electrodes”, H. Kuwata, H. Sonoki, M. Matsui, Y. Matsuda, N. Imanishi, (11), 854-860, (2016).

  19. “Low temperature synthesis of high crystalline spinel oxides: LiNi1/2Mn3/2O4” Y. Matsuda*, M. Matsui, T. Sanda, Y. Takashi and N. Imanishi, 83(10), 870-873 (2015).

  20. “Phase formation of a garnet-type lithium-ion conductor Li7-3xAlLa3Zr2O12” Y. Matsuda, K. Sakamoto, M. Matsui, O. Yamamoto, Y. Takeda and N. Imanishi, 23-29 (2015).

  21. “Synthesis, crystal structure, and electrochemical properties of Li1.2+xMn0.3Co0.2Ni0.3O2 (x > 1) for lithium-ion battery cathodes”, Y. Mizuno, Y. Matsuda, K. Suzuki, M. Yonemura, M. Hirayama, R. Kanno, (10), 820-822 (2015). 10.5796/electrochemistry.83.820

  22. “Capacity improvement by deficit of transition metals in inverse spinel LiNi1/3Co1/3Mn1/3VO4 cathodes”, A. Kitajou, J. Yoshida, S. Nakanishi, Y. Matsuda, R. Kanno, T. Okajima and S. Okada, 240-246 (2015).

  23. “Stability of garnet-type solid electrolyte LixLa3A2 -yByO12 (A = Nb or Ta, B = Sc or Zr)”, H. Nemori, Y. Matsuda, S. Mitsuoka, M. Matsui, O. Yamamoto, Y. Takeda and N. Imanishi, 7-12 (2015).

  24. “Lithium ion diffusion measurement on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-echo NMR method”, K. Hayamizu,Y. Matsuda, M. Matsui and N. Imanishi, 21-27 (2015).

  25. “A novel aqueous lithium–oxygen cell based on the oxygen-peroxide redox couple”, M. Matsui, A. Wada, Y. Matsuda, O. Yamamoto, Y. Takeda and N. Imanishi, 389-3192 (2015).

  26. “Syntheses, structures, and ionic conductivities of perovskite – structured lithium – strontium – aluminum / gallium–tantalum-oxides”, T. Phraewphiphat, M. Iqubal, K. Suzuki, Y. Matsuda, M. Yonemura, M. Hirayama and R. Kanno, J. Solid State Chem., 225, 431-437 (2015).

  27. “Relationship between lithium content and ionic conductivity in the Li5+2xLa3Nb2-xScxO12 system”, H. Nemori, Y. Matsuda, M. Matsui, O. Yamamoto, Y. Takeda and N. Imanishi, 9-12 (2014).

  28. "High-pressure synthesis o f lithium-rich layered rock-salt Li2(Mn3/8Co1/4Ni3/8)O3-x for lithium battery cathodes", Y. Matsuda, K. Suzuki, M. Hirayama and R. Kanno, Solid State Ionics, 262, 88-91 (2014).

  29. "Synthesis, Crystal Structure, and Ionic Conductivity of Tunnel Structure Phosphates, RbMg1-xH2x(PO3)3·y(H2O)", Y. Matsuda, M. Yonemura, H. Koga, Cedric Pitteloud, M. Nagao, M. Hirayama and R. Kanno, Journal of materials chemistry A, 1, 15544-15551 (2013).

  30. “Oxygen-vacancy concentration in Sr2MgMoO6-d double-perovskite oxides", Y. Matsuda, M. Karppinen, Y. Yamazaki and H. Yamauchi, Journal of Solid State Chemistry, 182, 1713-1716 (2009).


  • 『リン酸塩の結晶構造制御による中温作動型プロトン固体電解質の開発』, Y. Matsuda, J. Jpn. Soc. Colour Mater., 97, 12 (2024).

  • 『水素の効率利用を目指した次世代型超プロトン導電材料』,松田 泰明,化学工業第72巻 第9号, 2021.8.

  • 『酸化物系全固体電池の電解質として』, 武田 保雄, 松田 泰明, 森 大輔, 今西 誠之, 全固体電池の基礎理論と開発最前線 第4章, pp.42-56 2018.7.

  • 『7LiNMRによるリチウム拡散観測』, 早水 紀久子、松田 泰明、全固体電池,11章 2017.2.

  • 『Li7-3xAlxLa3Zr2O12の相関係』, 松田 泰明、松井 雅樹、今西 誠之, Netsu Sokutei, 42(2),pp.62-68, 2015.4.

  • 「プロトン伝導型固体電解質とその製造方法、およびプロトン伝導型燃料電池」, 松田泰明、東本慎也, 特願2020-188188, 2020.12.9

  • Cubic crystal garnet-type lithium-lanthanum-zirconium composite oxide and method for producing the same. Y. Matsuda, M. Matsui, I, Yamashita, JP 2018065704, 2018.4.26

  • Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same」, T. Yamada, Y. Matsuda, M. Matsui, Y. Aihara, N. Imanishi, US2015-14800907(米国),2015.6.16

bottom of page